4,009 research outputs found

    Travelling Wave Solutions of Nonlinear Dynamical Equations in a Double-Chain Model of DNA

    Get PDF
    We consider the nonlinear dynamics in a double-chain model of DNA which consists of two long elastic homogeneous strands connected with each other by an elastic membrane. By using the method of dynamical systems, the bounded traveling wave solutions such as bell-shaped solitary waves and periodic waves for the coupled nonlinear dynamical equations of DNA model are obtained and simulated numerically. For the same wave speed, bell-shaped solitary waves of different heights are found to coexist

    Museum in the Age of Digital Transformation

    Get PDF
    Transformational technologies have arrived to the traditional institutions accompanied with new promises and challenges. Nevertheless, little research exists to inform our understanding on the transformation undergoing in our aged old institutions. This short paper presents an in- depth case study at a world-renowned museum in China to develop understanding on the digital transformation of a traditional institution. Our preliminary analysis sheds light on the duality of digital transformation through the theoretical lens of technology affordances. On one hand, digital transformation affords unprecedented possibilities for the revitalization of an aged old institution. On the other hand, digital transformation also generates uncertainties and tensions. Our analysis suggests that most traditional institutions are not well-endowed to quickly adapt to the changing needs in the digital environment. These preliminary findings unveil the intricacies of digital transformation in traditional institutions and serve to inform further theorizing around this underresearched phenomenon

    Analysis of two pheromone-responsive conjugative multiresistance plasmids carrying the novel mobile optrA locus from Enterococcus faecalis

    Get PDF
    Background: The acquired optrA gene, which encodes a ribosomal protection protein of the ABC-F family, can confer cross-resistance to linezolid and florfenicol, posing a serious therapeutic challenge to both human and veterinary medicine. Purpose: The objective of this study was to investigate the two Enterococcus faecalis (E. faecalis) plasmids for their fine structure, their transferability and the presence of mobile antimicrobial resistance loci. Methods: To elucidate their fine structure, the two plasmids were completely sequenced and the sequences analysed. Besides conjugation experiments, inverse PCR assays were conducted to see whether minicircles are produced from the mobile antimicrobial resistance loci. Results: Two pheromone-responsive conjugative optrA-carrying plasmids from E. faecalis, pE211 and pE508 were identified, which can transfer with frequencies of 2.6 ×10−2 and 3.7 ×10−2 (transconjugant per donor), respectively. In both plasmids, optrA was located on the novel mobile optrA locus with different sizes (12,834 bp in pE211 and 7,561 bp in pE508, respectively), flanked by two copies of IS1216 genes in the same orientation. Inverse PCR revealed that circular forms can be generated, consisting of optrA and one copy of IS1216, indicating they are all active. The 77,562 bp plasmid pE211 also carried Tn558 and a mobile bcrABDR locus, and the 84,468 bp plasmid pE508 also harbored the genes fexA, tet(L), tet(O/W/32/O) and a mobile aac(A)-aph(D) locus. Conclusion: The presence of mobile genetic elements in these plasmids renders them flexible and these elements will aid to the persistence and dissemination of these plasmids among enterococci and potentially also other gram-positive bacteria

    Stability of Negative Solitary Waves for a Generalized Camassa-Holm Equation with Quartic Nonlinearity

    Get PDF
    We consider the stability of negative solitary waves to a generalized Camassa-Holm equation with quartic nonlinearity. We obtain the existence of negative solitary waves for any wave speed > 0 and some of their qualitative properties and then prove that they are orbitally stable by using a method proposed by Grillakis et al

    Dam Construction Impacts Fish Biodiversity in a Subtropical River Network, China

    Get PDF
    Dams and diversions are a primary threat to freshwater fish biodiversity, including the loss of species and restructuring of communities, often resulting in taxonomic homogenization (increased similarity) over time. Mitigating these impacts requires a strong scientific understanding of both patterns and drivers of fish diversity. Here, we test whether different components of fish biodiversity have changed in response to major dam construction, and whether these patterns are predictable as a function of key environmental factors in the Gan River Basin, China. The results showed that total and native species alpha diversity have declined from the historical period (pre-dam) to the current period (post-dam). A total of 29 native species are lost, while 6 alien species were gained over time. We found evidence for fish faunal homogenization in the Gan River Basin, with a slight (1%) increase in taxonomic similarity among river basins from the historical period to the current period. Additionally, we revealed significant associations between drainage length, drainage area, and average air temperature, and alpha and beta fish diversity. This study provides new insight into the patterns and drivers of fish biodiversity change in the broader Yangtze River Basin and helps inform management efforts seeking to slow, and even reverse, current trajectories of biodiversity change

    Efficient Solar-to-Thermal Energy Conversion and Storage with High-Thermal-Conductivity and Form-Stabilized Phase Change Composite Based on Wood-Derived Scaffolds

    Get PDF
    Solar-to-thermal energy conversion is one of the most efficient ways to harvest solar energy. In this study, a novel phase change composite with porous carbon monolith derived from natural wood is fabricated to harvest solar irradiation and store it as thermal energy. Organic phase change material n-octadecane is physically adsorbed inside the porous structure of the carbonized wood, and a thin graphite coating encapsulates the exterior of the wood structure to further prevent n-octadecane leakage. The carbonized wood scaffold and the graphite coating not only stabilize the form of the n-octadecane during phase change, but also enhance its thermal conductivity by 143% while retaining 87% of its latent heat. Under 1-sun irradiation, the composite achieves an apparent 97% solar-to-thermal conversion efficiency

    Theoretical study on pp --> p n pi+ reaction at medium energies

    Full text link
    The pppnπ+pp\to p n \pi^+ reaction is a channel with the largest total cross section for pp collision in COSY/CSR energy region. In this work, we investigate individual contributions from various NN^* and Δ\Delta^{*} resonances with mass up to about 2 GeV for the pppnπ+pp\to p n \pi^+ reaction. We extend a resonance model, which can reproduce the observed total cross section quite well, to give theoretical predictions of various differential cross sections for the present reaction at Tp=2.88T_p=2.88 GeV. It could serve as a reference for identifying new physics in the future experiments at HIRFL-CSR.Comment: talk at STORI08, Sept. 2008, Lanzhou, Chin

    Patterns of CO2 emissions in 18 central Chinese cities from 2000 to 2014

    Get PDF
    With the Rise of Central China Plan, the central region has had a great opportunity to develop its economy and improve its original industrial structure. However, this region is also under pressure to protect its environment, keep its development sustainable and reduce carbon emissions. Therefore, accurately estimating the temporal and spatial dynamics of CO2 emissions and analysing the factors influencing these emissions are especially important. This paper estimates the CO2 emissions derived from the fossil fuel combustion and industrial processes of 18 central cities in China between 2000 and 2014. The results indicate that these 18 cities, which contain an average of 6.57% of the population and 7.91% of the GDP, contribute 13% of China's total CO2 emissions. The highest cumulative CO2 emissions from 2000 to 2014 were from Taiyuan and Wuhan, with values of 2268.57 and 1847.59 million tons, accounting for 19.21% and 15.64% of the total among these cities, respectively. Therefore, the CO2 emissions in the Taiyuan urban agglomeration and Wuhan urban agglomeration represented 28.53% and 20.14% of the total CO2 emissions from the 18 cities, respectively. The three cities in the Zhongyuan urban agglomeration also accounted for a second highest proportion of emissions at 23.51%. With the proposal and implementation of the Rise of Central China Plan in 2004, the annual average growth rate of total CO2 emissions gradually decreased and was lower in the periods from 2005 to 2010 (5.44%) and 2010 to 2014 (5.61%) compared with the rate prior to 2005 (12.23%). When the 47 socioeconomic sectors were classified into 12 categories, “power generation” contributed the most to the total cumulative CO2 emissions at 36.51%, followed by the “non-metal and metal industry”, “petroleum and chemical industry”, and “mining” sectors, representing emissions proportions of 29.81%, 14.79%, and 9.62%, respectively. Coal remains the primary fuel in central China, accounting for an average of 80.59% of the total CO2 emissions. Industrial processes also played a critical role in determining the CO2 emissions, with an average value of 7.3%. The average CO2 emissions per capita across the 18 cities increased from 6.14 metric tons in 2000 to 15.87 metric tons in 2014, corresponding to a 158.69% expansion. However, the average CO2 emission intensity decreased from 0.8 metric tons/1000 Yuan in 2000 to 0.52 metric tons/1000 Yuan in 2014 with some fluctuations. The changes in and industry contributions of carbon emissions were city specific, and the effects of population and economic development on CO2 emissions varied. Therefore, long-term climate change mitigation strategies should be adjusted for each city
    corecore